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The properties of reflection and transmission of internal gravity waves incident upon 
a shear layer containing a critical level are investigated. The shear layer is modelled 
by a hyperbolic tangent profile. In the Boussinesq approximation, the differential 
equation governing the propagation of these waves can then be transformed into 
Heun’s equation. For large Richardson numbers this equation can be approximated 
by an equation that has solutions in terms of hypergeometric functions. For these 
values of the Richardson number the reflection coefficient proves to be strongly 
dependent on the place of the critical level in the shear flow. If the Doppler-shifted 
frequency is an odd function of the height difference with respect to the critical level, 
the reflection and transmission coefficients can be evaluated in closed form. 

Over-reflection is possible for sufficiently small wavenumbers and Richardson 
numbers. It is pointed out that over-reflection and over-transmission cannot occur in 
a stable flow and that resonant over-reflection is not possible in our model. 

1. Introduction 
The reflection and transmission properties of internal gravity waves incident upon 

a shear layer containing a critical level are strongly dependent on parameters such as 
Richardson number and wavenumber. A by-now classical paper on this subject is that 
by Booker & Bretherton (1967). These authors have shown that, for Richardson 
numbers greater than t ,  part of the energy of the incident wave is absorbed into the 
basic flow. On the other hand, Richardson numbers smaller than Q can yield over- 
reflection (which means that the amplitude of the reflected wave is greater than that 
of the incident one). This phenomenon has been discussed by several authors, e.g. 
Jones (1968), McKenzie (1972), Eltayeb & McKenzie (1975) and Acheson (1976). 
Because low Richardson numbers are a necessary condition for over-reflection, this 
phenomenon is in a great many cases only possible in regions of the parameter space 
for which the shear flow is unstable. Acheson (1976), considering hydromagnetic 
internal gravity waves and magneto-acoustic waves, has shown that over-reflection 
is possible even if the flow is stable. 
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However, he made use of the so-called vortex-sheet velocity profile. This model also 
allows the occurrence of resonant over-reflection, i.e. a situation in which the shear 
layer spontaneously emits outgoing waves (McKenzie 1972; Lindzen 1974). In weakly 
nonlinear theory, for the vortex-sheet model, resonant over-reflection can also occur, 
see Grimshaw (1979). The vortex-sheet model has some disadvantages: it does not 
contain a scale for the inhomogeneity of the medium, and the stability analysis may 
be doubtful, as has been indicated by Blumen, Drazin & Billings (1975) for an inviscid, 
compressible fluid. 

A more advanced model for the shear flow has been studied by Jones (1968), Eltayeb 
& McKenzie (1975) and Drazin, Zaturska & Banks (1 979). They considered a piecewise 
linear basic flow profile. However, the discontinuities in the derivative of this profile 
give rise to extra reflected energy. For large Richardson numbers a dominant part of 
the reflected energy arises from these discontinuities. 

A model that does not exhibit the disadvantages mentioned above is the hyperbolic 
tangent profile. Reflection and transmission properties of this profile have been 
calculated numerically by Mied & Dugan (1975) and analytically by Grimshaw (1976), 
Drazin et al. (1979) and Brown & Stewartson (1980). The latter authors examined the 
nonlinear interaction of a gravity wave with its critical level, and calculated cor- 
rections of the reflection and transmission coefficients obtained for the linear steady 
case. 

In this work the basic flow is also modelled by a hyperbolic tangent profile. The 
fluid is assumed to be incompressible, inviscid and Boussinesq. In  this paper we are 
mainly occupied with shear flows in which a critical level exists, i.e. some point in the 
fluid where the phase velocity of the gravity wave matches the shear flow. The hyper- 
bolic tangent profile allows equation (2. 1), the wave equation, to be transformed into 
an equation of the Fuchsian type with four singularities, known as Heun’s equation 
(Heun 1889). 

In general this equation does not allow the reflection and transmission coefficients 
to be expressed by known functions of mathematical physics ( 5  2). For large Richardson 
numbers, however, it  can be reduced to an equation which has solutions in terms of 
hypergeometric functions ( 9  3). With the help of the circuit relations rather simple 
expressions for the reflection and transmission coefficients can be determined. 

If the Doppler-shifted frequency, i.e. the wave frequency as observed at a frame 
moving with the fluid, is an odd function of the height difference with respect to the 
critical level, the wave equation can be solved exactly, without any restriction with 
respect to the values of the Richardson number and other relevant parameters ( 5  4). 

By introducing a suitable transformation of the independent variable of this 
equation, that conserves the symmetry properties, the resulting equation has solutions 
in terms of hypergeometric functions. The expressions for the reflection and trans- 
mission coefficients allow a detailed analysis of the critical-level behaviour. Some of 
the methods presented in this work are also relevant in plasma physics (Sluijter 1967; 
van Duin & Sluijter 1980) and in optics (van Duin & Sluijter 1979). 
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2. Statement of the problem 
The propagation of internal gravity waves in an incompressible, inviscid and 

Boussinesq fluid with a mean density p(z), where z is measured vertically upwards, 
and with a basic velocity U = ( U ( x ) ,  0,O) in the positive x-direction, is governed by 
the Synge-Taylor-Goldstein equation 

where 4 is related to the vertical component w of the perturbation velocity through 
w(2, z ,  t )  = $ ( z )  exp ( i (wt  - Icx)}. The variable x in suffix position denotes differentiation. 
The Brunt-Vaisala frequency N ,  which is assumed to be constant, is defined by 
N 2  = -gp-l(dp/dz), g being the gravitational acceleration. The meaning of the other 
symbols used is evident. 

The basic flow is modelled by the profile 

U ( z )  = +Uo ( 1  + tanh :I. (2.2) 

If we introduce a transformation of the independent variable of (2.1) according to 

substitution of (2.2) and (2.3) into (2.1) yields the equation 

d2$ 2 7 - 1  d$ 12Uo-2N2+~(1-~)(~-~)(2~-I)-12k2(~-~)2 
-+-- $ = 0, (2.4) 
dV2 7 ( 7 - w 7 +  r2(7 - (r - a)2 

where 

c = w / k  being the horizontal phase velocity of the wave. 
In this work we are mainly occupied with shear flows in which a critical level exists, 

i.e. some level at height x = zc where the basic flow matches the horizontal phase 
velocity. This assumption leads to the condition U, > c ,  or 0 < a < 1.  

Equation (2.4) is of the Fuchsian type, with four singularities. The singuIarities 
7 = 0 and 7 = 1 of (2.4) correspond to the extremes of transformation (2.3); the 
singular point 7 = a is associated with the place of the critical level. Equation (2.4) 
can be brought into st'andard form by the transformation 

a = w/kU, = quo, (2.5) 

where 

1 2 N 2  
y = :'i(0!2u2(1--a)2 

The resulting equation reads 

(2.7b) 

( 2 . 7 ~ )  

v = 0, 

F L M  I20 

i ( A - 2 ) q + B + l - a C  

17 
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A = (a+P+Y)( l+a+p+y) ,  B = -a2+p2-y2--2ay, (2.9a, b)  

c = az+pz- y2+a+p+ y + 2 4  ( 2 . 9 ~ )  

Equation (2.8) is a special form of Heun’s equation (Heun 1889; Snow 1952; Erdblyi 
et al. 1953). The solution relative to  the (fourth) singular point 7 = a of (2.8) should 
be made one-valued, which is done by introducing a branch-cut in the complex 7-plane 
from 7 = a to  7 = a-ioo. This special choice of the cut can be motivated as follows. 
If we take the frequency slightly complex, causality arguments leading to  the 
condition 4 w  < 0 (where 4 denotes the imaginary part), the singular point 7 = a lies 
in the lower half of the complex 7-plane ( Y ( a )  < 0) .  For real frequencies this leads to  
the condition that we should fix the branch by taking arg (7 - a )  = T for 7 < a (Light- 
hill 1960; Booker & Bretherton 1967). We write down (2.1) in the Helmholtz form 
$,,+ K2(z )  # = 0 and define 

The quantities K- and K+ are real if 

K* = lim {K2(z)}3. (2.10) 
z + f m  

(2.11) 

referring to  (2.2), (2.3) and (2.5). The quantities K- and K+ are either real (and 
positive) or imaginary, as follows from their definition. Because the reflection and 
transmission coefficients are only defined if K- and K+ are real, we assume that 
condition (2.11) is satisfied. A gravity wave from region 1 ( z - t  - 00) incident upon the 
shear layer gives rise to  a reflected wave in region 1 and a transmitted wave in region 
2 (z+ a). I n  region 1 the solution of (2.1) reads 

$ ( z )  = e iK-z+Re- iK-Z.  (2.12a) 

The amplitude of the incident wave is normalized to  unity; R is the amplitude of the 
reflected wave. I n  region 2 the solution of (2.1) should take the form 

$ ( z )  = Te-iK’”, (2.12b) 

T being the amplitude of the transmitted wave. Thus (2.12a, b) are boundary condi- 
tions to  be imposed on the general solution of (2.1). 

The Richardson number is defined bv 

If J denotes the minimum value of Ri, we have 

J = 16l2N2/U;. 

(2.13) 

(2.14) 

3. Reflection and transmission coefficients for large Richardson numbers 
When the term with U,, in the invariant? of (2.1) is omitted, the resulting equation 

t The invariant of the second-order equation y”+py’+qy = 0, where the prime denotes 
differentiation, is defined by I = q - ; p 2 -  &p‘. 
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with U ( z )  given by (2.2), is reducible to the hypergeometric equation. Before we show 
this, we derive conditions under which equation (2.1) may be approximated by (3.1). 

The general solution of (2.1) in a neighbourhood of the point z,, where zc is the place 
of the critical level, reads 

(3.2) 

with y* = 4 f i(Ri, - &)$, Ri, being the Richardson number a t  the critical level. 
Neglect of the term with U, does not influence the behaviour of the solutions (3.2) in 
a small neighbourhood of the point 2,: the exponents y* are determined by Ri, only. 
Because the term with V,, vanishes for z+ & 00, the invariants of (2.1) and (3.1) have 
the same asymptotic behaviour. If the relative difference between these invariants is 
small, i.e. if 

(3.3) 

foranyvalueofz (K2(z)  andL2(z) denoting theinvariantsof (2.1) and (3.1)respectively), 
(2.1) can be approximated by (3.1). L2(z) has no zeros if 

(3.4) 

$* = (2 - ZC)Y*  { 1 + C * ( Z  - 2,) + . . .}, 

l{W) - L2(2)}/L2(2) I < 1 

J > 1 6Z2k2 max {a2, (1 - u ) ~ ]  = J,, 

referring to (2.2), (2.3), (2.13) and (2.14). Condition (3.4) is equivalent to (2.11). If 
J 2 (1+y) J,,withy > O,andm(u) = 16max{~~(1-~)(~-~)(2~-1)~),maxdenoting 
the maximum of the argument for 0 < 7 Q 1, (3.3) corresponds to 

(0 < u < 1). (3.5) 

This condition indicates that for large Richardson numbers (2.1) can indeed be 
approximated by (3.1). 

The ‘low-frequency’ approximation, i.e. w2 < N 2 ,  corresponds to J 9 16Z2k2a2. For 
a = Q this approximation involves J B J, (or y p 1) and u 21 1. Condition (3.5) then 
corresponds to J 9 0.49 (m(Q) = 0.49). An order of magnitude for the parameter 
m(a) is m(a)  2: 1.44 max (a,  1 -a) .  However, this estimated value is too high. Roughly 
estimating, (3.5) implies J 9 1.  

Determination of rejleetion and transmission eoeficients 
Substitution of the transformations (2.3) and (2.6) into (3.1) yields 

Ay+B-aC 
dy2 7 7 - 1  7 - a  d7 7(7-1)(7-a) 

+-1)@+ v = 0. 
d2v -+(-+- 1+2a 1+2p 

The parameters in this equation are given by (2.5), (2.7) and (2.9). Note that a = iZK- 
and /3 = iZK+, in view of (2.10). 

Equations (2.8) and (3.6) are special forms of Hcun’s equation. The invariant of the 
full Heun equat>ion is of the form 

with arbitrary const,ants ak. If u3 = 0 and a4 = 0 (and the invariant of (3.6) satisfies 
this condition), this equation can be transformedi into Riemann’s equation (Erdklyi 

t The point at infinity of the cqiiation d “ / d v 2 $  I(v)$r = 0 is then an ordinary point. 
17-2 
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1953). The point co of Riemann's equation is an ordinary point. The solutions of (3.6) 
around the singularities 11 = 0,  a and 1 are characterized by the Riemann P-symbol 

a 1 

0 

-2a 1-2y -2p 
(3.7) 

These solutions can be expressed in terms of those of the hypergeometric equation. The 
symbolic form of this relation is given by 

U 1 

0 

-2a 1-2y -2p 

1 co 
I-a 11 

-2a 1 - 2 y  a-p+y 

where the latter P-symbol characterizes the solutions of Dhe equation 

wit'h 
I -a  11 6=--- 
a 1-11' 

(3.9) 

(3.10) 

Equation (3.9) is the hypergeometric equation in standard form. If ul(t) and u2(Q 

Q(2) = va(l  - 7 P - Y  (11 -a)? {DU,(O + -@%(6)}9 (3.11) 

with [ = t ( ~ ( z ) ) .  D and E are arbitrary constants; the transformations ~ ( z )  and t (y)  
are defined by (2.3) and (3.10) respectively. The singularity t = 1 of (3.9), which 
corresponds through (3.10) to the place of the critical level, is a branch point of this 
equation. Because the derivative of (3.10) with respect to 7 is positive a t  7 = a, we 
should fix the branch by taking arg ( 6 -  1) = 7r for 6 < 1 (see also $ 2 ) .  

For the circuit relation that is relevant for the determination of the reflection and 
transmission coefficients we refer to  Erddlyi et al. (1953, vol. 1, p. 107, relation (37)) .  
Using this circuit relation the asymptotic behaviour of the solution (3.11) is in agree- 
ment with (2.12). The reflection and transmission coefficients are given by 

are linearly independent solutions of (3.9), the general solution of (3.1) reads 

where 
1 

4a 
a, = $(a) = - ( J -  16Z2k2a2)*, (3.14a) 
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referring to (2.7),  (2.13) and (2.14). Because Ri(x,) > J ,  (3.5) involves real yl. Condi- 
tion (2.11) leads to positive a, and pl. The absolute values of R and T can be deter- 
mined, and using properties of the I?-function a straightforward calculation yields 

(3.15) 

(3.16) 

It is of interest to note that, in our model, for fixed 1, N ,  and U,, involving a fixed value 
of J and a fixed basic flow, the reflection coefficient is strongly dependent on the 
parameter a ,  corresponding to the place of the critical level in the shear flow or the 
ratio of horizontal phase velocity c and the extreme U, of the basic flow. To simplify 
the calculations, we again use the low-frequency approximation, corresponding to 
J 9 1612k2a2. Then we obtain for large values of J 

IRI 2: 2 * e x ~ { - & n a - ~ J ~ } ,  
from which i t  follows that 

(3.17) 

(3.18) 

I n  figure 1 we give a graphical presentation of the absolute values of the reflection 
and transmission coefficients and IT/. For lk = 0.5 and J = 25, IRI and IT1 are 
plotted as functions of the parameter u = c/U,. The reflection coefficient increases with 
increasing a.  This may be explained as follows. For fixed 1, N and U, the basic flow 
U ( z )  and the parameter J are fixed, and the height of the critical level increases with 
a. Since the incident wave propagates upwards, partial reflection due to  the inhomo- 
geneity then becomes more important as a increases. The transmission coefficient, on 
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the other hand, does not change significantly when a is replaced by 1 -a. In  other 
words, the transmission coefficient is determined mainly by the Richardson number 
at the place of the critical level. 

If we consider a piecewise-linear basic flow profile, assuming again large Richardson 
numbers and using the low-frequency approximation, the reflection coefficient is 
independent of a (Eltayeb & McKenzie 1975). This does not agree with our result 
(3.17). 

It is interesting to compare our results with those obtained for the same profile, i.e. 
the hyperbolic tangent profile, but with other methods. Grimshaw (1976) determined 
the reflection and transmission coefficients by means of a refined JWKB method and 
the theory of analytic functions. This approach is valid in the limit lk  + a, for fixed 
N / w  and IcU,/N. When we rewrite al, p1 and y1 in (2.7) as 

a straightforward calculation shows that the above limit applied to (3.15) and (3.16) 
yields 

IRI 2: 24e-2%, (3.19) 

(3.20) 

The results (3.19) and (3.20) agree with those derived by Grimshaw (1976, equations 
(3.37), (3.48) and (3.49)). To compare our iesults with those obtained by Drazin et al. 
(1979) we rewrite the parameters al, pl, y1 as 

where R = l2N2/U;  is the overall Richardson number. 
For fixed lk,  (3.16) becomes 

(3.21) 

The result (3.21) agrees with the one obtained by Drazin et al. (1979, equation (28)), 
for the piecewise-linear shear-flow profile. 

Absence of a critical level 
For U, < c a critical level does not exist. If (3.5) is satisfied, with a > 1 in this case, the 
reflection and transmission coefficients can be determined in the same way as before. 
The absolute values of these quantities are given by 

and 
t - sinh 2na1 sinh 2nPl 

I T ’  = (-2) (coshn(al-Pl+yl) coshn(al-pl-Yl) 

(3.22) 

(3.23) 

Note that p1 is negative in this case, referring to (3.14b). We compare the results 
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(3.22) and (3.23) with those obtained by Gsimshaw (1976) and Drazin et al. (1979) for 
the hyperbolic tangent profile. I n  the limit lk+co, (3.22) reduces to 

2: e-Znal -  e-Znb’1 w - e-2naI.  (3.24) 

The result (3.24) corresponds with that derived by Grimshaw (1976, equation (2.10)). 
Note that with a > 1 we restricted ourselves to the case 0 < U, < c .  

Drazin et al. (1979) considered the limit 8-+co, with R/a2 constant. Applying this 
limit to (3.22) and (3.23) we obtain 

where 

7r( Z2k2 + p2) 
I R I  2: a,usinh2 (27rp)’ 

(3.25) 

,u = ( 8 / a 2  - 12k2)j. 

The expressions (3.25) and (3.26) agree with those 
(apart from a minus sign and a factor 2). 

Finally, we remark that from (3.22) and (3.23) we 

(3.26) 

derived by Drazin et al. (1979) 

may deduce the relation 

(3.27) 

which can be interpreted as the balance equation for the wave-energy flux. 

4. Exact solutions 
Starting from (2.8), the reflection and transmission coefficients could not be deter- 

mined for arbitrary values of the parameters involved. However, if the Doppler- 
shifted frequency, defined by i2 = o - k U ( z ) ,  is an odd function of the variable x - zc 
(the height difference with respect to  the critical level), the invariant of (2.1) is even 
with respect to this variable. By introducing a suitable transformation of the inde- 
pendent variable of (2. 1 ) ,  that conserves the symmetry properties, the resulting 
equation can be transformed into the hypergeometric equation. The reflection and 
transmission coefficients can then be determined exactly, without any restriction with 
respect to  the values of the Richardson number and other relevant parameters. The 
only restriction is the one mentioned above, which corresponds to  U, = 2c or a = $ 
(cf. (2.2) and (2.5)). 

We assume that the critical level is a t  z = 0. Then substituting the transformations 

< = tanh (2/21), (4.1) 

(4.2) $ ( z )  = (1  - <2)&(J-412k2)8 <$++i(J-&*u(<) 

into (2.1) with (2.2)) and remembering that U, = 2c) we obtain the equation 

u = 0, (4.3) 

(4.4a) 

d2u 2y 2( 1 + 2a) 6 du 8a2+ 2a - 2 - 4Z2k2 + 2y( 1 + 2a) 
@+{Z+ p - 1  I$+( 5 2 -  1 

with 
a = &i ( J  - 4l2k2)6 = ZiK- = liK+ = ial, 

(4.4b) 
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I 
FIGURE 2. Domain of convergence of the solutions v i (< )  and ui(<). 

The singular points 6 = 5 1 of ( 4 . 3 )  correspond to the extremes of the transformation 
( 4 . 1 ) .  The singularity 5 = 0 is associated with the place of the critical level. A branch 
cut is made from 6 = 0 to  5 = - ico in the complex [-plane. This special choice of the 
cut has been justified in $ 2 .  Equation (4 .3 )  is a special form of Heun’s equation. 
However, because its invariant is an even function of 6, and two singularities lie 
symmetric around 5 = 0,  a quadratic transformation of 6 can be used to reduce the 
number of singular points. 

The resulting equation is the hypergeometric equation. The solutions of (4 .3 )  with 
respect to the singularity 5 = 0 are given by 

uY(5) = F ( 1  +a+ :y, - Q +a: + Qy; 4 + y ;  C2), ( 4 . 5 a )  

ug(5) = 6 ’ - ” ’ (~+a-Qy ,a -By ;~ -y ;52 ) .  ( 4 . 5 b )  

The symbol F denotes the hypergeometric power series. The series ( 4 . 5 a )  b )  converge 
inside the domain 0 < (51 < 1. These solutions are linearly independent for J + +. I n  
the case J = 4 an independent solution, involving a logarithmic term, can be con- 
structed. However, we will exclude this special value of J .  As we will see, the ex- 
pressions for the quantities t o  be derived can be easily obtained for this value of the 
Richardson number, without alluding to  the solution with the logarithm. For 
- I < 5 < 1 the solution (4.50,)  is a linear combination of the functions 

ui(5) =P(l+a+Qy,  -&+CC+Qy; 1+2a:; 1 - 5 2 ) ,  ( 4 . 6 ~ )  

ui(6) = ( I  - 62)-2“F( - 1 2 - a+Qy,I-a++y; 1 - 2 ~ ;  1-6’). ( 4 . 6 3 )  

The series (4.6~) b )  are defined for arbitrary values of the parameters involved. They 
converge inside two lobes in the complex 5-plane that touch a t  the origin (figure 2). 
The coefficients in the relation between the solutions ( 4 . 5 )  and ( 4 . 6 )  are dependent on 
the sign of 6. 

For 0 < 5 < 1 this relation is written down in the form 

4 ( 6 )  = A, u:K) + A,4(5)1 

u%-) = 4 4 ( 5 )  + A44(5). 
( 4 . 7 a )  

( 4 . 7 b )  

Because the point 5 = 0 is a branch point of the solution (4 .5b ) ,  the constants A,  and 
A ,  in ( 4 . 7 )  should be multiplied by a factor exp ( 2 7 ~ ~ ~ )  for - 1 < 6 < 0. Because the 
coefficients A ,  are well-known (ErdBlyi et al. 1953), the reflection and transmission 
coefficients can now be determined. 
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The general solution of (2.1) with (2.2), and U, = 2c, reads 

(4.8) = (1 - N P l  U i ( 0  + P, UP(C)l. 

Taking p1 = A ,  and p ,  = -A,,  the asymptotic behaviour of (4.8) is given by 

i(A1A4e--nyi-A2A3enYi) eiai'n4eiKis 

-2iA,A,~inh(ny,)e-~~l~~~e-~~+~ ( x - t  -XI), (4.9a) 

(A ,A , -A ,A , )  eia1In4e--iXiz ( Z - t = J ) ,  (4.9b) 

in view of (4.1) and (4.4)-(4.8). A comparison of (2.12) and (4.9a-b), with K- = K+in 
this case, yields the reflection and transmission coefficients. Condition (2.11) implies 
real (positive) values of a,. 

The parameter y1 is positive for J > and imaginary for J < ). We define 

y, = (*-J)& (J < t).  *),I y1 = ( J - t ) *  ( J  > 

Using properties of the r-function, a straightforward calculation yields 

(4.10) 

(cosh2 ny, + sinh2 2na,)i 
e-2nal (J > t),  (4.11 a) 

cosh nyl 

(4.11b) 
(cos2 ny2 + sinh2 2na1)4 e-2nal ( J  $1; i cos ny, 

IRI = 

sinh 2na, 
cosh nyl 

sinh 2na, 
cos ny, 

( J  > t),  

( J  < B). 

e-2nal 

e-2na, 
PI = 

(4.12a) 

(4.12 b) 

It is interesting to compare (3.15) and (3.16) with (4.11a) and ( 4 . 1 2 ~ ) .  Inserting the 
parameter values (4.4) into (3.15) and noting that a, = /3, (a = Q ) ,  (3.15) and (4.11~) 
appear to be identical, although (3.15) was assumed to be an approximation. The 
same applies to the results (3.16) and (4.12a). Even for J < + these identities hold. 

So in the case of a critical level at  the inflection point of the basic flow the absolute 
values of the reflection and transmission coefficients do not change if the term with 
the second-order derivative of the basic velocity is neglected. A further argument for 
this conclusion can be found in the paper of Brown & Stewartson (1980). They con- 
sidered the hyperbolic tangent profile and a density profile such that the second-order 
derivative term disappears in the Synge-Taylor-Goldstein equation. The resulting 
equation is solved by means of integral transforms. It should be noted that their 
equation can also be transformed into the hypergeometric equation by introducing 
as a new independent variable x = - sinh2 y. So their solutions are hypergeometric 
functions, expressed in the form of a Mellin-Barnes integral (Abramowitz & Stegun 
(1964). Their expressions for the reflection and transmission coefficients can be con- 
siderably simplified, using the properties of the gamma functions. It turns out that 
the absolute values are the same as (4.11) and (4.12). 

For large values of the Richardson number, i.e. for J 9 1, ( 4 . 1 1 ~ )  and ( 4 . 1 2 ~ )  can 
be written as 

IRI = 2$e-n(J-412k2)*, IT1 = e-n(J-%)*. (4.13a, b )  
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We now compare the results (4.13a7 b) with those obtained by Eltayeb & McKenzie 
( 1975). They considered the profile 

0 ( z  < o), ( 4 . 1 4 ~ )  

(4.14b) 

u, (2  2 L) .  ( 4 . 1 4 ~ )  

For large values of the Richardson number, and bearing in mind that U, = 2c, these 
authors derived expressions for the reflection and transmission coefficients that are 
dependent on the Richardson number only. Eltayeb & McKenzie made use of the 
low-frequency approximation. Because t>his approximation corresponds to  J 412k2, 
the same applies to ( 4 . 1 3 ~ ~  b). Taking L = 41, the profiles (2.2) and (4.14) have the 
same slope at the place of the critical level. This ensures that the profiles under con- 
sideration have the same value of J .  

U ( 4  = uoz (0 < z  < L),  

Eltayeb & McKenzie obtained the results 

IRI = $J-*, I T I  = e-nJh. ( 4 . 1 5 ~ ~  b) 

Comparing ( 4 . 1 3 ~ )  and (4.15a) it will be clear that a dominant part of the reflected 
wave energy emanates from the discontinuities in the derivative of the profile (4.14) 
at z = 0 and z = L. For example, substituting J = 16 into ( 4 . 1 3 ~ )  and (4.15a) yields 
]RI = 3.5 x and (RI = 0.0625 respectively. These ‘knees’ (i.e. discontinuities in 
the derivative of the velocity profile) also mask the dependency of R on the place of 
the critical level in the shear flow (see $3) .  The transmission coefficient, on the other 
hand, is less dependent on the knees, referring to  (4.13b) and (4.15b). The transmitted 
wave energy is determined mainly by the derivative of the basic flow in the critical 
layer, corresponding to the parameter J .  For smaller values of J other parameters 
play also a role. 

Over-reflection 

With the aid of the recurrence relation for the r-functions applied to  those factors in 
the expression for the reflection coefficient that become singular for I = 0, and referring 
to the coefficients A, in (4.9),  we obtain 

IimR-1 = 0. 
I - t O  

(4.16) 

From (4.16) we deduce that for sufficiently small values of I the amplitude of the 
reflected wave exceeds that of the incident one. For sufficiently small values of the 
Richardson number the absolute value of R is larger than unity. A necessary condition 
for this phenomenon, called over-reflection, is that J < $ (cf. (4.11 a)). I n  figure 3 the 
domain of over-reflection is sketched. This figure shows a second condition for wave 
amplification: the normalized wavenumber p = 211% should be sufficiently small. Using 
the low-frequency approximation, over-reflection occurs if J < Ri, N 0.132; Ri, is the 
maximum value of the Richardson number a t  the critical level for which over- 
reflection occurs. It is interesting to compare this value of Ri, with the results obtained 
by others: Ri, = 0.115 (Jones 1968) and Ri, = 0.1129 (Eltayeb & McKenzie 1975). 

Figure 4 shows that for sufficiently small values ofp,  for fixed N 2 / w 2 ,  the maximum 
of the reflection coefficient increases with decreasing p, in accordance wit,h (4.16). 
Note that J = p2N2/w2, with M 2  > w2 (because of the condition J > pz ) .  
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Normalized wave number p 

FIGURE 3. The domain of over-reflection is bounded by the curvesp = 0, PI P ,  and OP,, where 
PI = (0, 0.132) and P, = (0.3, 0.106). On the curves P I P ,  and O P ,  there is total reflection. 
The boundary O P ,  lies above the curve J = p 2 .  The distance between the latter curves decreases 
with decreasing p .  I n  the domain J < p 2  the invariant of (2.1) is negative for sufficiently 
large 121. The dashed curves are boundaries of the domain of over-transmission. The curve 
J = pz(l -p2) is the neutral stability curve. 

lo-' 
10 102 

N 2 / W =  

FIGURE 4. Variation of IRI wit11 X 2 / w 2  for different values of p ;  J < $. 
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As has been mentioned before, over-reflection is possible provided J < 4. We will 
now show that the shear flow considered here is unstable for these values of J. In  other 
words, over-reJlection cannot occur for values of J for  which the $ow is stable. I n  linear 
stability theory the so-called neut,ral stability curves are of interest. I n  several cases 
these curves prove to  be stability boundaries (Miles 1961; Howard 1961; Drazin & 
Howard 1966). The neutral stability curve(s) can be determined by solving (2 .1) ,  with 
boundary conditions -+ 0 for z -+ 2 00 (real values of c should be considered). Any 
point on the(se) curve(s) corresponds to an eigenvalue of (2.1).  Considering the shear 
flow (2 .2 ) ,  with U, = 2c, Drazin (1958) has shown that the curve 

J = p2(1 - p 2 )  (4.17) 

is a neutral stability curve. Thorpe (1969), applying more general methods, has shown 
that (4.17) is the only possible one. Hence, we are left with the possibilities (i) any 
mode within the domain G, i.e. the domain in the (p,J)-plane with boundaries 
J = p 2 ( 1  -p2)  and J = 0, is stable and (ii) any mode within G is unstable. Howard 
(1963) computed (2c/2p),  and (2c /aJ) ,  on the neutral curve (4.17),  see his equation 
(20 ) .  This formula shows that (4 .17)  is a stability boundary indeed: any mode within 
G is unstable. Because the curve (4.17) has a maximum J = a, the shear flow con- 
sidered is unstable for J < $. 

Over-transmission 

I n  the same way as before we can deduce 

limT-l = 0. 
1-0 

(4.18) 

For sufficiently small values of the Richardson number the amplitude of the trans- 
mitted wave is larger than that of the wave incident upon the shear layer. Because 
K+ = K-, this means that the transmitted wave energy flux is larger than the incident 
one (for these values of J ) .  A necessary condition for this phenomenon, which may be 
called over-transmission, is that J < & (cf. ( 4 . 1 2 ~ ) ) .  I n  figure 3 the domain of over- 
transmission is sketched. From (4.11b) and (4.12b) we deduce that IT/ < 1221. This 
means that over-transmission is only possible if JRI > 1. 

Resonant over -reflection 

A special case of over-reflection is resonant over-reflection when, according to linear 
wave theory, there is no incident wave and the shear layer spontaneously emits out- 
going waves. Resonant over-reflection is possible (in our model) if the parameters 
involved satisfy the relation 

A,A,  = A2A3e2nyi, (4.19) 

in view of (4.9). Condition (4.19) is equivalent to  

R-1 = 0, T-1 = 0. (4.20 a,  6 )  

This condition can only be satisfied if I = 0, referring to (4 .11)  and (4.12).  Because the 
condition 1 = 0 is meaningless, we can conclude that resonant over-reflection is not 
possible. 

Recalling (4.16) and (4.18),  the amplitudes of the reflected and transmitted waves 
increase with decreasing I (for sufficiently small values of 1 ) .  When we remove the 
source, however, the generated waves vanish: the transition from over-reflection to 
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resonant over-reflection is not possible a t  all. I n  other words, in our model, if there is 
no incident wave, there will be no reflected nor transmitted waves. 

Though the condition 1 = 0 for resonant over-reflection is meaningless, we note that 
the profile under consideration has the property 

2c (2 > O),  

0 (2 < 0) .  
lim U ( z )  = 
1-0 

(4.21 a )  

(4.21b) 

For sufficiently small values of 1 the transitional Epst,ein profile approximates the 
so-called Helmholtz profile (vortex sheet). Though the approximation is better with 
decreasing values of 1, the transition from the Epstein profile to the vortex sheet is not 
uniform. McKenzie (1972) and Lindzen (1974) have shown that the Helmholtz velocity 
profile does allow the occurrence of resonant over-reflection. McKenzie derived the 
remarkable condition that the flow speed equals twice the horizontal phase velocity : 
U, = 2c, which is just the case we consider here. Grimshaw (1979) confirmed the 
existence of resonant over-reflection in a similar flow by applying weakly nonlinear 
theory. McIntyre & Weissman (1 978) derived a temporal development of resonant 
over-reflection, retaining the vortex-sheet idealization. 

So for real frequencies the Helmholtz velocity profile allows the occurrence of 
resonant over-reflection while the (smooth) Epstein profile inhibits this phenomenon. 
Allowing complex frequencies, however, the work of Drazin et al. (1979) suggests that 
resonant over-reflection may occur. 

5. Discussion 
The principal purpose of this work was to find exact solutions for internal gravity 

waves propagating through a critical layer. With the hyperbolic tangent profile the 
relatively small collection of profiles for which exact solutions can be obtained has 
been extended. Exact solutions are necessary to allow a careful analysis of the critical- 
layer behaviour, and these solutions are a criterion ofthe validity of other ways to solve 
a problem. 

We have shown that, in our model, if the Doppler-shifted frequency is an odd 
function of the height difference with respect to the critical level, resonant over- 
reflection does not occur for certain values of the parameters involved. Our model does 
not allow solutions that correspond to only outgoing waves. In  other words, the waves 
radiating from the critical level vanish when the source is removed. The vortex-sheet 
model, on the other hand, does allow the occurrence of resonant over-reflection 
(McKenzie 1972; Lindzen 1974; Grimshaw 1979). This model, however, cannot be 
justified from a physical point of view, as has been recognized by Blumen et al. (1975) 
and Grimshaw (1979). The former authors considered a continuous model, containing 
solutions that are not found in the corresponding vortex-sheet model. 

Although over-reflection is possible for sufficiently small Richardson numbers and 
normalized horizontal wavenumbers, we have shown in our model that this pheno- 
menon does not occur when the shear flow is stable. If over-reflection occurs, there 
exist modes with wavelengths for which the flow is unstable. If we consider very small 
normalized horizontal wavenumbers, over-reflection is possible if J < 0.132. This 
figure differs somewhat from the results obtained by Jones (1968) and Eltayeb & 
McKenzie ( 1975). 
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For large Richardson numbers we obtained rather simple expressions for the 
reflection and transmission coefficients. In  contrast to the piecewise-linear profile 
(Jones 1968; Eltayeb & McKenzie 1975), the reflection coefficient proves to be 
strongly dependent on the parameter a = c/U& which corresponds to the place of the 
critical level in the shear flow. The discontinuities in the derivative of the piecewise- 
linear profile apparently annihilate the dependency of the reflection coefficient on the 
parameter mentioned. 

The transmission coefficient is determined mainly by the derivative of the basic 
flow at the place of the critical level. 

Assuming large Richardson numbers again, the expressions for the reflection and 
transmission coefficients, in the absence of a critical level, have been determined in a 
way similar to that used previously. 

We have shown that in cases of overlap our results correspond with those derived 
by Eltayeb & McKenzie (1975), Grimshaw (1976), Drazin et al.  (1979) and Brown & 
Stewartson (1980). 

The authors acknowledge the very helpful comments of the referees. One of the 
authors (C. v. D) also acknowledges the financial support by the Netherlands Organiza- 
tion for the Advancement of Pure Research (ZWO). 
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